Novel design architecture for genetic stability of recombinant poliovirus: the manipulation of G/C contents and their distribution patterns increases the genetic stability of inserts in a poliovirus-based RPS-Vax vector system.
نویسندگان
چکیده
Poliovirus has been studied as a live recombinant vaccine vector because of its attractive characteristics. The genetic instability, however, has hampered recombinant polioviruses (PVs) from being developed as an appropriate vaccine. A variety of different foreign inserts were cloned directly into our poliovirus Sabin 1-based RPS-Vax vector system, resulting in the production of recombinant PVs. The genetic stability of each recombinant PV was examined during 12 rounds of consecutive passage. It was found that the genetic stability of the recombinants was not well correlated with their insert size. Instead, elevated stability was frequently observed in recombinants with inserts of high G/C contents. Furthermore, a comparative study using different constructs of the human immunodeficiency virus env gene revealed that the internal deletion of the unstable insert was seemingly caused by the presence of the adjacent A/T-rich region. The instability of these inserts was completely remedied by (i) increasing the G/C contents and (ii) replacing the local A/T-rich region with the G/C-rich codon without a change of the amino acid. This means that stability is closely associated with the G/C content and the G/C distribution pattern. To see whether these findings can be applied to the design of genetically stable recombinant PV, we have reconstructed the heteromultimeric insert based on our design architecture, including the above-mentioned G/C rules and the template/ligation-free PCR protocol. The heteromultimeric insert was very unstable, as expected, but the manipulated insert with the same amino acid sequence showed complete genetic stability, not only in vitro, but also in vivo. Even though this guideline was established with our RPS-Vax vector system, to some extent, it can also be applied to other live viral vaccine vectors.
منابع مشابه
3-RPS Parallel Manipulator Dynamical Modelling and Control Based on SMC and FL Methods
In this paper, a dynamical model-based SMC (Sliding Mode Control) is proposed fortrajectory tracking of a 3-RPS (Revolute, Prismatic, Spherical) parallel manipulator. With ignoring smallinertial effects of all legs and joints compared with those of the end-effector of 3-RPS, the dynamical model ofthe manipulator is developed based on Lagrange method. By removing the unknown Lagrange multipliers...
متن کاملOverexpression of Recombinant Human Granulocyte Colony-Stimulating Factor in E. coli
Bakground: Granulocyte colony-stimulating factor (G-CSF) is a cytokine that stimulates hematopoiesis and induces proliferation and differentiation of granulocyte progenitor cells as well as production of bone marrow neutrophilic granulocyte colonies. Nowadays, human recombinant G-CSF(hr G-CSF)is used for the treatment of chemotherapy- and radiotherapy-induced neutropenia, and also in patients ...
متن کاملProduction and Characterization of a Monoclonal Antibody Neutralizing Poliovirus Type 2
Monoclonal Antibodies (mAbs) are used for biomedical research, diagnosis, treatment, production, and the quality control of biological products. mAbs are also very helpful in poliovirus research studies because it is still one of the major public health problems in developing countries. The main objective of this study was the production of mAbs against Poliovirus Type 2 (PV2) to be prepared an...
متن کاملطراحی و ساخت سازه ژنی نوترکیب بیان کننده ژن حفاظت کننده سلولی
Background : Genetic manipulation is an effective strategy to protect cells against environmental damages and enhance their capabilities for therapeutic usage. In order to avoid unwanted side effects, such as cancers, the expression of genes should be temporary increased. The aim of this study was to clone and temporary increased expression of a cell protective gene, Metallothionein 1 (MT1) in ...
متن کاملMolecular Engineering of the Geobacillus stearothermophilus α-Amylase and Cel5E from Chlostridium thermocellim; In Silico Approach
Background: Considering natural thermal stability, Geobacillus stearothermophilus amylase and Cel5E from Clostridium thermocellum are good candidates for industrial applications. To be compatible with the industrial applications, this enzyme should be stable in the high temperatures, so any improvement in their thermal stability is valuable.Objectives: Us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 76 4 شماره
صفحات -
تاریخ انتشار 2002